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Background
Tendermint 2014

● first non-PoW BFT consensus algo & impl

Cosmos  2017,

● first complete solution to “proof of stake”

● first blockchain-to-blockchain communication protocol IBC

● CosmosSDK, most popular Go framework for blockchain dev



What is Gno

Gno is a deterministic Go interpreter*

* goroutines and generics planned

transactional
persistent
magical



Why Gno?

The Gno VM enables
seamless interoperability of 
untrusted user programs
written in the Go language.
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State of Smart Contract Langs



EVM/Solidity?

* EVM limitations
* Solidity limitations
* No garbage collector
* Max 16 variables per function
* No closures
* No self-referential structs
* …



Near/WASM/Rust?
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Near/WASM/JS?



Solana/WASM/Rust?



WASM/Go?
knqyf263/go-plugin

1. * Choose the interface(s) you want to expose for plugins.
○ - Define Messages and Services in a proto file.

2. * Generate SDK for a host and plugin by go-plugin.
3. * Implement the Go interface defined in the plugin SDK.
4. * Compile your plugin to Wasm.
5. * Load the plugin and call the defined methods.



Why not WASM?

Solved: loading/unloading modules.
Solved: memory limitations
Solved: determinism (sort of)
Solved: CPU limitations

Unsolved: complex frameworks
Unsolved: relies on actor model (message passing)



Gno VM
* Language-level interoperability

* Fine-grained memory/cpu/storage limitations

* Automatic persistence

* Determinism for replicability

* Simple, < 30k lines of code

* Interprets the Go language



Gno VM - Stack-based AST VM



Gno VM - Op codes



Gno VM - Persistence
There are two types of packages

3.  * Pure packages - immutable, stateless
4.  * Realm packages - mutable, stateful 

Any changes to Realm packages are persisted
(at the end of a transaction boundary)



Gno VM - Persistence



Gno VM - Persistence
A transaction is just function call
(that crosses realm boundaries).



Lessons learned
Interpreter VMs need memory management for performance.

 * e.g. each for/if/range/select/switch/call creates a *Block
 * `go tool pprof`
 * `go tool pprof --alloc_space --alloc_counts`
 * `go tool compile -S`
 * pool.Get()/pool.Put()



Lessons learned
Primitive types as interface values allocate pointers.
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Lessons learned
Avoid switching on interface values.
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Scope != Allocation
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Lessons learned
Go reflection is limited

● * cannot create named types
● → cannot make recursive types
● * cannot create interfaces

→ limited/hacky "go-native" support, will be removed.

 



Future Work
Upgrading (runtime) logic will be a challenge.
Bugs happen. What then?

 



Future Work
 * Replacing a function or method w/ same signature is OK.
   → like iOS "swizzle".

 * Appending fields to a struct:
   → will break old logic w/ use of reflection.
   → will break old logic w/ use of .(type) checks.

 * Appending methods is almost OK,
   → but will break old logic w/ use of .(type) checks.

 * User-land upgrade patterns preferred.

 



Future Work
intra-transaction GC

 * piggy back on Go's runtime GC (today)
 * but Go’s GC doesn’t make free memory available (yet)
 → increment memory counter for every value allocation
 → when memory limit is reached, count everything reachable



Future Work
global persistent GC

 * after a transaction, all reachable objects are saved to disk.
 * cycles will lead to persistent-memory-leaks.
 * PLAN 0: don't create post-transaction cycles.
 * PLAN 1: implement a GC for persistent objects.
 * PLAN 2: extend the language with ownership rules.



Gno.land is…
 * a distributed multi-user language-based operating system.
 * the Go lover's answer to Ethereum.
 * a repository of open auditable Gno code.
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Thank you!

Website

gno.land
Gno Docs

docs.gno.land
Gno Playground

play.gno.land

Twitter

@_gnoland
Github

gnolang/gno
We’re hiring!

@jaekwon


