
Jae Kwon

Gno: Lessons in Building
a Go Interpreter in Go

Background
Tendermint 2014

● first non-PoW BFT consensus algo & impl

Cosmos 2017,

● first complete solution to “proof of stake”

● first blockchain-to-blockchain communication protocol IBC

● CosmosSDK, most popular Go framework for blockchain dev

What is Gno

Gno is a deterministic Go interpreter*

* goroutines and generics planned

transactional
persistent
magical

Why Gno?

The Gno VM enables
seamless interoperability of
untrusted user programs
written in the Go language.

Seamless Interoperability

Seamless Interoperability

State of Smart Contract Langs

EVM/Solidity?

* EVM limitations
* Solidity limitations
* No garbage collector
* Max 16 variables per function
* No closures
* No self-referential structs
* …

Near/WASM/Rust?

Near/WASM/Rust?

Near/WASM/JS?

Solana/WASM/Rust?

WASM/Go?
knqyf263/go-plugin

1. * Choose the interface(s) you want to expose for plugins.
○ - Define Messages and Services in a proto file.

2. * Generate SDK for a host and plugin by go-plugin.
3. * Implement the Go interface defined in the plugin SDK.
4. * Compile your plugin to Wasm.
5. * Load the plugin and call the defined methods.

Why not WASM?

Solved: loading/unloading modules.
Solved: memory limitations
Solved: determinism (sort of)
Solved: CPU limitations

Unsolved: complex frameworks
Unsolved: relies on actor model (message passing)

Gno VM
* Language-level interoperability

* Fine-grained memory/cpu/storage limitations

* Automatic persistence

* Determinism for replicability

* Simple, < 30k lines of code

* Interprets the Go language

Gno VM - Stack-based AST VM

Gno VM - Op codes

Gno VM - Persistence
There are two types of packages

3. * Pure packages - immutable, stateless
4. * Realm packages - mutable, stateful

Any changes to Realm packages are persisted
(at the end of a transaction boundary)

Gno VM - Persistence

Gno VM - Persistence
A transaction is just function call
(that crosses realm boundaries).

Lessons learned
Interpreter VMs need memory management for performance.

 * e.g. each for/if/range/select/switch/call creates a *Block
 * `go tool pprof`
 * `go tool pprof --alloc_space --alloc_counts`
 * `go tool compile -S`
 * pool.Get()/pool.Put()

Lessons learned
Primitive types as interface values allocate pointers.

Lessons learned

Lessons learned

Lessons learned
Avoid switching on interface values.

Lessons learned

Lessons learned
Scope != Allocation

Lessons learned
Scope != Allocation

Lessons learned
Go reflection is limited

● * cannot create named types
● → cannot make recursive types
● * cannot create interfaces

→ limited/hacky "go-native" support, will be removed.

Future Work
Upgrading (runtime) logic will be a challenge.
Bugs happen. What then?

Future Work
 * Replacing a function or method w/ same signature is OK.
 → like iOS "swizzle".

 * Appending fields to a struct:
 → will break old logic w/ use of reflection.
 → will break old logic w/ use of .(type) checks.

 * Appending methods is almost OK,
 → but will break old logic w/ use of .(type) checks.

 * User-land upgrade patterns preferred.

Future Work
intra-transaction GC

 * piggy back on Go's runtime GC (today)
 * but Go’s GC doesn’t make free memory available (yet)
 → increment memory counter for every value allocation
 → when memory limit is reached, count everything reachable

Future Work
global persistent GC

 * after a transaction, all reachable objects are saved to disk.
 * cycles will lead to persistent-memory-leaks.
 * PLAN 0: don't create post-transaction cycles.
 * PLAN 1: implement a GC for persistent objects.
 * PLAN 2: extend the language with ownership rules.

Gno.land is…
 * a distributed multi-user language-based operating system.
 * the Go lover's answer to Ethereum.
 * a repository of open auditable Gno code.

Gno.land is…
 * a distributed multi-user language-based operating system.
 * the Go lover's answer to Ethereum.
 * a repository of open auditable Gno code.

Thank you!

Website

gno.land
Gno Docs

docs.gno.land
Gno Playground

play.gno.land

Twitter

@_gnoland
Github

gnolang/gno
We’re hiring!

@jaekwon

