
Building a Decentralized App on gno.land

Presented by Dylan Boltz, Sr. Golang Developer @ Gno.land

https://github.com/gnolang/gc24-us-workshop

https://github.com/gnolang/gc24-us-workshop

Who am I?

Dylan Boltz

Sr. Golang Engineer @ gno.land

Go maximalist

Working in web3 for the past three years

https://github.com/deelawn

https://github.com/deelawn

Today’s Agenda

● Introduction to gno.land and blockchain in general
● Gno virtual machine architecture
● Develop a stackoverflow-like application on gno.land

Hands On: Phase 1

https://github.com/gnolang/gc24-us-workshop
Clone this repository and follow the instructions in P1 to
set up your local gno.land development environment

https://github.com/gnolang/gc24-us-workshop

What is gno and gno.land?

● gno is an interpreted, deterministic version of Go with a
persistent data store

● gno incorporates a select list of Go features and standard
libraries from Go version 1.17

● gno.land is soon to be released blockchain which uses gno as
its smart contract programming language

What is a Blockchain?

● Distributed database
● Immutable transaction history
● Decentralized control
● Verifiable state
● Trustless
● State transitions: func(currentState, txs) newState

Block N

Txs: …
Hash: 0xab…
PrevHash: 0x…

Block N+1

Txs: …
Hash: 0xcd…
PrevHash: 0xab..

Block N+2

Txs: …
Hash: 0xef…
PrevHash: 0xcd..

State Trans State Trans

Blockchain Network

● Nodes P2P communication
● Clients submit transactions to

a node
● Node propagates transactions

to the network
● A node proposes a block
● Other nodes verify the block

gno - features and limitations

● Determinism guaranteed
● Generics not supported (yet)
● No concurrency
● Built in application state persistence
● Import select standard libraries and other packages

and applications deployed to a VM instance
● Safe execution in a sandboxed environment
https://docs.gno.land/reference/go-gno-compatibility

https://docs.gno.land/reference/go-gno-compatibility

Example gno.land realm

Globals variables
are persisted

Exported functions
are callable

Unexported
functions only
callable from
within this realm

Why use gno.land?

● Enables developers to write transparent and composable smart contracts
using Gno, a language chosen for its simplicity

● Abstract away storage and variable lifecycle management by storing any
value defined as a global realm variable

● Give developers the choice for if and how they’d like to render application
data that is stored on the blockchain, granting users an accessible view into
the application’s state

● Enable the development of decentralized social applications that need not
solely focus on finance or cryptographic assets

Hands On: Phase 2

● Any issues with setting up the gno.land dev environment?
● Open README.md in the phase2 directory
● Stackoverflow-like gno.land realm
● Use gnodev and gnokey to develop and test
● Define a Question data structure
● Write functions to add and modify questions
● Look for gno.land team members if you need help or have

questions

Why type out gnokey commands manually?
Once gnodev is started, you can navigate to the gnoverflow realm in your
browser at localhost:8888/r/gc24/gnoverflow.

http://localhost:8888/r/gc24/gnoverflow

P2: Checkin

● The Render function is what gets called when visiting
localhost:8888/r/gc24/gnoverflow

● It returns a string, that can be markdown, and is rendered in the browser
● We use AVL trees in place of maps; due to gno’s deterministic nature, a map

implementation over an ordered range is slightly less efficient
● An AVL tree is a key-value store. Using a Question pointer (*Question) type as

the value means that values retrieved from the tree can be modified directly
without having to use the trees Set() method

● Use std.PrevRealm().Addr() to retrieve the std.Address that called
the function being executed

http://localhost:8888/r/gc24/gnoverflow

P2: What have we accomplished?

● Users can call a realm function to ask a question
● Asked questions are rendered in the browser for all to see
● Questions, being a global realm variable, are persisted on the blockchain

automatically
● Modifications to realm storage (Questions) results in automatic persistence
● Data is distributed across the network, redundantly stored on each gno.land

blockchain node

Try not to panic but…
DO Panic!

Embrace it

Panicking during realm code execution is normal and is the way to abort a
transaction when something unexpected happens

It ensures any realm state changes are rolled back

Determinism

● Necessary
● No network packages are supported
● time.Now()

○ Returns the time of the current block
○ The same value is returned for all transactions in the

current block

Hands On: Phase 3

● Define a struct to store an answer
● Answers must be associated with questions
● Where answers are stored is up to you
● Render answers underneath each question
● Should be very similar P2

P3: Checkin

● Answers may want to have a field to store the ID of the question it
corresponds to

● How to store Answers?
○ As a slice field of a Question
○ In a separate AVL tree

● How answers are stored will dictate how they need to be iterated over in the
Render function

● Should the same address be able to answer a question multiple times or
should they be forced to update the existing answer? Your call

● Answer IDs can be global or question specific depending on planned features

P3: What have we accomplished?

● Questions can now be answered
● Answers can be modified
● Answers are stored on the gno.land blockchain
● It’s starting to look a bit more useful

Realm Creation Flow

Realm Call Flow

Hands On: Phase 4

● Define a moderator that can lock questions and answers
○ Hint: global variable assignments and init() functions are only execution at the time of

realm creation
● Upvotes

○ Questions and answers can both be upvoted
○ Only one upvote per address is allowed

● Update the Render function to display
○ If something is locked
○ The number of upvotes

P4: Checkin

● var Moderator = std.PrevRealm().Addr() will set Moderator equal
to the address creating the realm. When using gnodev, this is the address of
test1

● How should upvotes be stored? Does the fact that only one upvote is allowed
per address influence this decision?

● We have been using the uintavl package for uint64 -> value mappings. There
is also the gno.land/p/demo/avl package for string -> value mappings.

● When using a new non-stdlib package, don’t forget to add it to the gno.mod
file

● The std.Address type has a String() method that returns the address’s string
representation

http://gno.land/p/demo/avl

P4: What have we accomplished?

● Moderator is a permissioned role!
○ Only the moderator can lock questions
○ Only the moderator can transfer role ownership

● Imagine how further development could yield tiered and/or elected levels of
permission content curation roles

● Adding upvoting functionality will allow question askers and moderators to
make more informed decisions when it comes to resolving a question

● Again, all of this data lives on the gno.land blockchain

What is GNOT?

● gno.land’s native token
● Used to pay gas fees
● Can be transferred between addresses
● Can be sent to realm’s during function calls
● Realm code can check if GNOT was sent and act accordingly

Banker

The banker enables realms to interact with GNOT

Hands On: Phase 5

● Allow questions to be created with bounties
○ A question is created with a bounty equal to the amount of ugnot specified in the -send flag
○ Ex: gnokey maketx call -func PostQuestion -send 100000ugnot …

● Moderators and question authors can resolve questions
○ No more answers or edits are allowed
○ If a question has a bounty, the bounty is payed out to the chosen answer

● Declutter question rendering
○ Only Render question titles
○ Clicking on a title should load the full question and all answers on a new page
○ Take advantage of the Render function’s single string argument to specify which question to

load

P5: Checkin

● Make use of std.GetOrigSend to check if a question should set a bounty
○ The coins sent are automatically deposited in the realm’s account

● When a question is resolved, pay out bounties to the address that provided
the chosen answer

○ Get a banker of type BankerTypeRealmSend to enable transferring of funds
○ The realm’s address can be obtained via std.CurrentRealm().Addr()

● Use markdown links to link question titles to the full questions
○ The link should be something like /r/gc24/gnoverflow:questions/0
○ The colon separates the realm from the Render argument
○ Parse the Render argument to determine which question to load
○ Use strconv.Itoa to convert the argument to an integer question ID

Gnoverflow Summary

● Decentralized, feature-minimal version of stack overflow supporting
○ Questions
○ Answers
○ Upvotes
○ Moderation
○ Bounties
○ Rendering

● The entire application and its data are stored on the gno.land blockchain
● The code is available for anyone to inspect before interacting with the app
● Bounty payments are built in and governed by the logic of the realm
● No need to worry about:

○ The application author changing the functionality
○ Data being lost

