
Building Dynamic Applications With Go
(and Gno!)

Presented by Dylan Boltz, Sr. Golang Developer @ Gno.land 



Who am I?

Dylan Boltz

Sr. Golang Engineer @ Gno.land

Go maximalist

Working in web3 for the past three years

Enjoying my time in Serbia

https://github.com/deelawn

https://github.com/deelawn


What is Gno and Gno.land?

● Gno is an interpreted, deterministic version of Go with a 
persistent data store

● Gno incorporates a select list of Go features and standard 
libraries from Go version 1.17

● Gno.land is soon to be released blockchain which uses Gno as 
its smart contract programming language

● This presentation will focus on the Gno virtual machine, not 
Gno.land 



What will this presentation cover?

● High level Gno features and architectural overview
● Virtual machine
● Examples of Gno use cases as a virtual machine outside 

of the blockchain context



Repository with examples

https://github.com/deelawn/gno-workshop

Note that none of the examples 
depend on another, so if one 
doesn’t work or you skip one, don’t 
worry about not being able to try 
the next

https://github.com/deelawn/gno-workshop


Gno features and limitations

● Determinism guaranteed
● Generics not supported (yet)
● No concurrency
● Built in application state persistence
● Import select standard libraries and other 

packages and applications deployed to a VM 
instance

https://docs.gno.land/reference/go-gno-compatibility

https://docs.gno.land/reference/go-gno-compatibility


Determinism

● Map types are less efficient because key ordering must be 
preserved for deterministic iteration

● No network packages are supported
● time.Now()

○ Can be supported at the blockchain level by using the block time
○ Non-blockchain gno requires a different solution 





How does the VM work?

● AST postfix traversal
● Nodes are statements that 

contain expressions to be 
evaluated

● Intermediate values and 
expressions pushed to and 
popped from the stack

● Values persisted to storage
● VM Stack Trace Example

Example of evaluating
A*(B-C) + (D+E)

Source: 
https://en.wikipedia.org/wiki/Stack_machine

https://docs.google.com/spreadsheets/d/1ydEL4bvEGIaaKoUYjVXnGipwgVy0QhYAgqNmdvn2CY0/edit?usp=sharing




Hands-on: Phase 1

● Use existing or create a new .gno 
file with main function

● cat <filename> | go run main.go



How is this helpful?

● Let’s be honest – it’s not THAT helpful
● You can run arbitrary gno code
● Basically go code with reduced functionality
● But it’s DETERMINISTIC!!!!!

<pause for applause>



Hands-on: Phase 2



Hands-on: Phase 2

● Use the VM in a simple CLI application
● Create a new gno app

○ Use the provider “adder.gno” file or create your own
○ go run main.go create -file adder.gno

● Call the `Add` function to increment the value
○ go run main.go call -app adder -func Add -args 2

● Call the `Value` function to see the result
○ go run main.go call -app adder -func Value

● The app state was persisted and updated. How does this work?



Application Creation Flow



Application Call Flow



What’s special about persisting values?

● All changes made to global application variables are saved 
to a key-value store automatically

● Values will be loaded into memory for use the next time a 
call is made to the application

● Value lifecycle is managed
○ Track number of references to a value
○ Automatically delete a value if the reference count reaches zero



Application State Persistence Flow



How is persisted data structured?

● Data is represented as objects
● Each has a unique object ID
● Object values are types like:

○ Array
○ Struct
○ Map
○ Block (list of values in a code block, in this case the global var block)

● Primitive types are saved as a part of an object
● For example, an application’s primitive state variables are persisted as part of 

a slice (array) that is defined within a code block value



State Persistence Example



Hands-on: Phase 3

● Let’s use an HTTP server to route requests to the VM
● go run main.go
● Starts an HTTP server on port 4591; updates main.go to change port
● Navigate to localhost:4591/installer
● This is an app that is created upon DB initialization
● Add app code there; use the example in the phase-3 directory if you 

want
● Navigate to localhost:4591/myname:your-name-here



What just happened there?

● The package name when creating an app is used as the URL path name 
to access it

● Render is a specially named function that requires the signature 
func (string) string

● Render is called when only the app name is specified
○ The input would be the string after the colon in the URL path (following a convention 

from gno.land)
○ It returns a string that is displayed in the browser (if accessed via the browser)
○ In our case, it returns HTML and javascript that is rendered to allow a callback to the 

endpoint that allows us to create new applications



What is apps.CreatePort?

● The example requires the port app 
to be created in order to use the 
installer app. Why is that?

● The installer app needs to know the 
port that the server is listening on 
and this could change each time the 
binary is restarted

● The solution is to read the port from 
the application state whenever 
rendering the javascript returned by 
the installer app



Hands-on: Phase 4

● Creating an app from the browser was cool, but copying code is a pain
● It’s much easier to point to a published app and install it locally
● Open two terminal windows and navigate to both cmd/alice and cmd/bob
● In each of them, go run main.go
● Alice is running on 4591, Bob on 4592
● Install an app on either of them via localhost:<port>/installer
● On the other, install a remote app via localhost:<port>/remoteinstaller
● Use the package name of the app created and the other’s localhost:port 

address



How does that work?

● Expand the VM interface to be able to retrieve the internal “mem 
package” representation and then create a new package using the mem 
package that was returned



Install Remote App Flow



Taking it one step further

● It would be nice for users to be able to interact with the same 
app, meaning that they can both observe the same state

● Would require state to be synchronized between everyone using 
the app

● Let’s consider the simple case: an app with no other 
dependencies

● No need for security – this is a proof of concept
● Make it event based?
● We can bootstrap event storage on the storage already provided 

by the Gno VM



Event Storage

● An event contains the same information you’d provide to the VM’s `Call` 
method when calling a function of an app

● It also includes an unsigned integer that represents the event sequence
● Ordering helps keep state in sync and keeps things deterministic



Event-based App Architecture



Hands-on: Phase 5

● Start up both Alice and Bob from within their respective directories
○ go run main.go

● We will not use the UI to create apps or calls
○ See included postman package
○ Alternately see the curl commands in the requests file

● Alice is running on 4591 and Bob on 4592
● Create the “postit” app on Alice’s machine
● Install the remote app on Bob’s machine
● Make a calls to the postit for both Alice and Bob
● Navigate to localhost:<port>/postit to observe the application state 

being synced between both application instances



Improvements

● This is nice but there are a lot more things that can be done
● Better event syncing – catch-up, dependencies
● Handling failures and retries
● Building in a reputation system, perhaps stored on the 

blockchain
● Implementing a form of consensus based on whitelists and 

reputation to remove some of the burden from the application 
host

● Data encryption



Making non-deterministic operations deterministic

● time.Now() was mentioned earlier
● It’s important to be able to complete non-deterministic operations

○ time
○ randomness
○ fetching data from 3rd parties

● Can be accomplished through splitting application calls to emit multiple 
events

○ A call may result in an operation off the VM
○ It posts its result to the VM, say event 1
○ The original call takes place on the state that has been modified by event 1
○ It produces two events



Takeaways

● Gno is currently only used as a part of gno.land
● Internal discussions are taking place in regards to the value of 

making a stand-alone gno powered application, sans blockchain
● Gno is great for ordered event based applications

○ Determinism
○ Event storage can be bootstrapped on gno storage
○ No need to manage application storage

● Applications can be installed (and eventually removed) without 
needing to add go code nor recompile the binary

● A user running the binary is able to interact with both local, and 
distributed applications while remaining in full control of their 
data, unlike the architecture of current web applications




