A gno.land

Building Dynamic Applications With Go

(and Gno!)

Presented by Dylan Boltz, Sr. Golang Developer @ Gno.land

Who am [?

Dylan Boltz

Sr. Golang Engineer @ Gno.land

Go maximalist

Working in web3 for the past three years
Enjoying my time in Serbia

https://github.com/deelawn

https://github.com/deelawn

What is Gno and Gno.land?

e Gno is an interpreted, deterministic version of Go with a
persistent data store

e Gno incorporates a select list of Go features and standard
libraries from Go version 1.17

e Gno.land is soon to be released blockchain which uses Gno as
its smart contract programming language

e This presentation will focus on the Gno virtual machine, not
Gno.land

What will this presentation cover?

e High level Gno features and architectural overview

e \irtual machine
e Examples of Gno use cases as a virtual machine outside

of the blockchain context

Repository with examples

https://qgithub.com/deelawn/gno-workshop

Note that none of the examples
depend on another, so if one
doesn’t work or you skip one, don'’t
worry about not being able to try
the next

https://github.com/deelawn/gno-workshop

Gno features and limitations

Determinism guaranteed

Generics not supported (yet)

No concurrency

Built in application state persistence

Import select standard libraries and other
packages and applications deployed to a VM
Instance

https://docs.gno.land/reference/go-gno-compatibility

https://docs.gno.land/reference/go-gno-compatibility

Determinism

e Map types are less efficient because key ordering must be
preserved for deterministic iteration
e NoO network packages are supported

e time.Now()
o Can be supported at the blockchain level by using the block time

o Non-blockchain gno requires a different solution

Gno Virtual
Machine

Preprocessor
Parse Code
Build AST
Import Resolution

Execution
Perform operations
Use stack to manage
statements and values

Data Lifecycle Management
Track variable references
Persist values post-execution
Delete data with no references

How does the VM work?

) Example of evaluating
AST postfix traversal A*(B-C) + (D+E)

e Nodes are statements that
contain expressions to be
evaluated

e Intermediate values and
expressions pushed to and
popped from the stack

e \Values persisted to storage
VM Stack Trace Example

Source:
https://en.wikipedia.org/wiki/Stack_machine

https://docs.google.com/spreadsheets/d/1ydEL4bvEGIaaKoUYjVXnGipwgVy0QhYAgqNmdvn2CY0/edit?usp=sharing

Execute code in main function or expression eval

Receive Result

Create new app / package

Call exported app function

Receive Result

Hands-on: Phase 1 PR
3 import - (
4 *context"
. . 5 "fmt"
e Use eX|st|ng or create a new .gno 6 [
7 "os"
flle Wlth maln funCtIon 2 "github.com/gnolang/gno/gno.me/gno"
e cat <filename> | go run main.go o)
g fu\r;;, m_a_l?i)gﬁo.NewVM()
14 input, err := io.ReadAll(os.Stdin)
. 15 if-err-!=-nil-{

1 package ma ln 16 panic(*failed to read input")
17 }
18

2 19 res, err := vm.Run(context.Background(), string(input))

. 20 if err !=nil {

3 func ma ln() { i; t::;l:;intln("run error:", -err.Error())

4 println("hello") I
25 fmt.Println("result:", res)

5 } 7

6 28 |

How is this helpful?

Let's be honest —it’s not THAT helpful
You can run arbitrary gno code
Basically go code with reduced functionality

<pause for applause>

Hands-on: Phase 2

0O N OO B WIN =

=
N B ® O

-~

package adder
var value int

func Add(n int) {
value += n

func Value() int {

return value
}¥,

52
53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

AN

AR

LS

switch os.Args[1] {

case-"call":
callSet.Parse(os.Args[2:])
result, _, err = vm.Call(

)

context.Background(),
xcallApp,

xcallIsPkg,
*xcallFunc,
callArgs. .-,

case '"create":
createSet.Parse(os.Args[2:]1)
var code - []byte
code, err = os.ReadFile(xcreateFile)
if-err-!=-nil-{

}

panic("failed to read file")

_, err = vm.Create|(

)

context.Background(),
string(code),
xcreatelsPkg,

false,

Hands-on: Phase 2

e Use the VM in a simple CLI application

e Create a new gno app

o Use the provider “adder.gno” file or create your own
o go run main.go create -file adder.gno

e Callthe Add function to increment the value
o go run main.go call -app adder -func Add -args 2

e Callthe Value function to see the result
o go run main.go call -app adder -func Value

e The app state was persisted and updated. How does this work?

Application Creation Flow

Run
Application Init
Functions

Parse |

Save
Preprocess

Application
State Variables

Application
Code

Save Declared
Types

Application Call Flow

Parse [
Load Package Preprocess
From Store Application
Code

What's special about persisting values?

e All changes made to global application variables are saved
to a key-value store automatically

e Values will be loaded into memory for use the next time a
call is made to the application

e Value lifecycle is managed

o Track number of references to a value
o Automatically delete a value if the reference count reaches zero

Application State Persistence Flow

Execution Ops

Input value(s)
g AssignOp to Get Existing Do Mark Parent
State Variable Value Object Assignment Object Dirty

Save Recursively Process all Mark Old
unsaved process child new, updated, Object as
values objects and deleted Deleted

Mark Object
as New

Data Finalization

How is persisted data structured?

e Data is represented as objects
e Each has a unique object ID
e Object values are types like:

o Array
o Struct
o Map

o Block (list of values in a code block, in this case the global var block)
e Primitive types are saved as a part of an object

e For example, an application’s primitive state variables are persisted as part of
a slice (array) that is defined within a code block value

State Persistence Example

r—

N

© 00 N O Ul B W

10
11
12
13
14

B e nt ™

package my

type Info struct {
Name FullName

Age

int

Email string

}

type FullName struct {

First

string

Middle string

Last

string

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

var info Info

func SetInfom

==

It

firstName,

middleName,

lastName string,

age int,

email string,

{

info = Info{
Name: FullName{First: firstName, Middle: middleName, Last: lastName},
Age: age,
Email: email,

5

func UpdateName(first, middle, last string) {

}

info.Name.First = first
info.Name.Middle = middle
info.Name.Last = last

Hands-on: Phase 3

Let’s use an HTTP server to route requests to the VM

go run main.go

Starts an HTTP server on port 4591; updates main.go to change port
Navigate to localhost:4591/installer

This is an app that is created upon DB initialization

Add app code there; use the example in the phase-3 directory if you
want

e Navigate to localhost:4591/myname:your-name-here

What just happened there?

e The package name when creating an app is used as the URL path name
to access it

e Render is a specially named function that requires the signature
func (string) string

e Render is called when only the app name is specified

o The input would be the string after the colon in the URL path (following a convention
from gno.land)
It returns a string that is displayed in the browser (if accessed via the browser)

o Inour case, it returns HTML and javascript that is rendered to allow a callback to the
endpoint that allows us to create new applications

What is apps.CreatePort?

e The example requires the port app 1 package port
to be created in order to use the 2
installer app. Why is that? 3 var number string
e The installer app needs to know the 4
port that the server is listening on)
and this could change each time the 2 func Number() string {
binary is restarted 6 return number
e The solution is to read the port from 7 }
the application state whenever 8
rendering the javascript returned by 9 func Set(p string) {
the installer app 10 number = p
11 }

Hands-on: Phase 4

Creating an app from the browser was cool, but copying code is a pain
It's much easier to point to a published app and install it locally

Open two terminal windows and navigate to both cmd/alice and cmd/bob
In each of them, go run main.go

Alice is running on 4591, Bob on 4592

Install an app on either of them via localhost:<port>/installer

On the other, install a remote app via localhost:<port>/remoteinstaller
Use the package name of the app created and the other’s localhost:port
address

How does that work?

e Expand the VM interface to be able to retrieve the internal “mem
package” representation and then create a new package using the mem
package that was returned

type VM- interface {

QueryMemPackage(ctx context.Context, appName string) *std.MemPackage
CreateMemPackage(ctx context.Context, memPackage *xstd.MemPackage) error

}

Hh Ul B W IN =

Install Remote App Flow

Install Remote

Request App Definition
Remote
HTTP
Receive App Definition Server

Local

HTTP
Server

Install App with Mem Package

Receive Result

Receive Result

Taking it one step further

It would be nice for users to be able to interact with the same
app, meaning that they can both observe the same state

Would require state to be synchronized between everyone using
the app

Let’s consider the simple case: an app with no other
dependencies

No need for security — this is a proof of concept

Make it event based?

We can bootstrap event storage on the storage already provided
by the Gno VM

Event Storage

e An event contains the same information you'd provide to the VM’s "Call
method when calling a function of an app

e |t also includes an unsigned integer that represents the event sequence
e Ordering helps keep state in sync and keeps things deterministic

func NextSequence(pkgPath string) (sequence uint64)

func Store(pkgPath string, sequence uint64, funcName, args string) (sequence uint64)
func Get(pkgPath string, start, end uint64) (jsonEncodedEvents string)

Event-based App Architecture

Local

Store Events
Store App State

Install mem package
Apply Events

Install Remote App Request mem package

Call Remote App \
g HTTP Server <

Receive mem package

Subscribe to events

after install Call remote function

Subscribe to Events
Call function

Remote

Store Events
Store App State Mem package

Mem package

—>

Call app function Return Events

Event WS

Client

Event WS

Server
Emit Events

Hands-on: Phase 5

e Start up both Alice and Bob from within their respective directories
o go run main.go

e We will not use the Ul to create apps or calls

o See included postman package
o Alternately see the curl commands in the requests file

Alice is running on 4591 and Bob on 4592

Create the “postit” app on Alice’s machine

Install the remote app on Bob’s machine

Make a calls to the postit for both Alice and Bob

Navigate to localhost:<port>/postit to observe the application state
being synced between both application instances

Improvements

This is nice but there are a lot more things that can be done

Better event syncing — catch-up, dependencies

Handling failures and retries

Building in a reputation system, perhaps stored on the

blockchain

e Implementing a form of consensus based on whitelists and
reputation to remove some of the burden from the application
host

e Data encryption

Making non-deterministic operations deterministic

e time.Now() was mentioned earlier

e |t'simportant to be able to complete non-deterministic operations
o time
o randomness
o fetching data from 3rd parties

e Can be accomplished through splitting application calls to emit multiple

events

o A call may result in an operation off the VM
It posts its result to the VM, say event 1

O
o The original call takes place on the state that has been modified by event 1
o It produces two events

Takeaways

e Gno is currently only used as a part of gno.land
e Internal discussions are taking place in regards to the value of
making a stand-alone gno powered application, sans blockchain

e Gno is great for ordered event based applications
o Determinism
o Event storage can be bootstrapped on gno storage
o No need to manage application storage

e Applications can be installed (and eventually removed) without
needing to add go code nor recompile the binary

e A user running the binary is able to interact with both local, and
distributed applications while remaining in full control of their
data, unlike the architecture of current web applications

Official website Gno Docs Gno Playground

gno.land docs.gno.land play.gno.land

X Twitter) Github
@_gnoland gnholang/gno

