
go -> gnogo -> gno
building a microblogbuilding a microblog

https://www.youtube.com/watch?v=F-_dadxcRJMhttps://www.youtube.com/watch?v=F-_dadxcRJM
zack scholl (zack scholl (@schollz@schollz))

1 / 221 / 22

https://www.youtube.com/watch?v=F-_dadxcRJM
https://github.com/schollz

go -> gno Gno is an interpreted version of the
programming language Go.

Gno allows Go developers (like myself) a low-
friction way to write smart contracts without
having to learn an exclusive language.

Gno.land is the platform to write the smart
contracts.

More information about Gno.land ecosystem:
https://gno.land/about

Today I will focus getting up and running with
Gno, assuming you know some Go. I will go over
the workflow and syntax using a practical
example of a "microblog" smart contract.

2 / 22

https://localhost:8888/
https://gno.land/about

go -> gno
prerequisites

Working with Gno is as easy as working in Go -
the syntax is near identical but workflow is
different.

First make sure you have Go installed. Then I
recommend installing Visual Studio Code w/ the
Gno extension by Hariom Verma. Then install
gofumpt :

go install mvdan.cc/gofumpt@latest

and clone the Gno project:

git clone https://github.com/gnolang/gno
cd gno

Build the Gno project utilities and gno.land :

make install
cd gno.land && make build

* Anytime you make changes to the Gno project you may have to
rebuild gno.land or Gno tools.

3 / 22

https://marketplace.visualstudio.com/items?itemName=harry-hov.gno

go -> gno
prerequisites
keys
- generating

First create a key. This will be used to make
transactions against the blockchain. For now
it will be used for local development.

> gnokey generate
brush laugh sure area film ...

Copy the bip39 mnemonic. Now we will actually
add the key:

gnokey add --recover yourkey

Enter the passphrase twice and then enter the
bip39 mnemonic generated earlier.

Now you should see your key when listing them:

> gnokey list
0. yourkey (local) - addr: youraddress ...

4 / 22

go -> gno
prerequisites
keys
- generating
- genesis

For local development, you should add the key
address (" addr ") to the genesis_balances.txt so
that you have tokens to make transactions. Get
the address:

> gnokey list
0. yourkey (local) - addr: youraddress pub: ...

Copy the address, youraddress and now edit
gno.land/genesis/genesis_balances.txt and add the
line at the end with your address:

youraddress=10000000000ugnot # @yourkey

This makes development easy without having to
utilize a faucet.

5 / 22

go -> gno
prerequisites
keys
gno.land

Gno.land is the platform to write smart
contracts in Gno, providing a transition
between web2 and web3.

As a Go developer, the Gno.land platform
allows you to create smart contracts that can
act as web servers that return Markdown.

A "realm" on Gno.land basically is a package
with a Render(path) string function, which takes
a path, processes it, and returns markdown.

The Markdown can be used to generate the
webpage and can display useful information
about the smart contract state (number of
tokens, ownership, etc.).

6 / 22

https://gno.land/

go -> gno
prerequisites
keys
gno.land
- spinning up

Lets spin up a local instance of Gno.land and
create a user with our address.

The realm gno.land/r/demo/users makes it easy
to add and view users.

I like to make a script, start.sh to easily
spin-up an environment:

#!/bin/bash

pkill -f 'build/gnoland'
pkill -f 'build/gnoweb'
rm -rf gno.land/testdir
cd gno.land && ./build/gnoland &
sleep 5
cd gno.land && ./build/gnoweb -bind 0.0.0.0:8888 &
sleep 2

You can run that script and wait a few seconds
for the gno.land server and gnoweb interface to
spin-up:

./start_gno.land.sh

7 / 22

http://localhost:8888/r/demo/users

go -> gno
prerequisites
keys
gno.land
- spinning up
- transactions

Before continuing, its also easiest if you
save your password to a file, e.g. " password "
and use that when making transaction calls.

Then you can create a user with this
transaction command:

cat password | gnokey maketx call \
 --pkgpath "gno.land/r/demo/users" --func "Register" \
 --args "" --args "yourname" --args "yourprofile" \
 --gas-fee "1000000ugnot" --gas-wanted "2000000" \
 --broadcast --chainid dev --remote localhost:26657 \
 --send "200000000ugnot" -insecure-password-stdin=true \
 yourkey

Now you will be able to see your user in the
realm:

gno.land/r/demo/users:yourname

8 / 22

http://localhost:8888/r/demo/users:yourname

go -> gno
prerequisites
keys
gno.land
- spinning up
- transactions
- maketx

The gnokey maketx allows you to call a function
within a realm. For /r/demo/users the function
is Register .

One of the cool things about gno.land is that
the source is available for every smart
contract, for example the users realm:
/r/demo/users/users.gno.

The function Register has three arguments -
(inviter std.Address, name string, profile string) .
The arguments are inputs to to the gnokey maktex

as --args arguments:

--args "" --args "yourname" --args "yourprofile"

The first argument is the address of the
inviter (blank since we don't have one). The
second argument is your name, as will be shown
in the profile, and the final argument is any
info you want to be shown on your page.

9 / 22

http://localhost:8888/r/demo/users/users.gno

go -> gno
prerequisites
keys
gno.land
- spinning up
- transactions
- maketx
- routing

The gno.land exists as a repository of realms
that can be utilized within your own smart
contracts.

The route of the realm is given by its package
path. In this example it is /r/demo/users .

The rendering of the realm can take other
arguments, which are designated after the
colon, : . For example, yourname is an argument
to the render function in this path:
gno.land/r/demo/users:yourname.

If we look at the Render() function of this
realm (this is the function that is run when
you go to the site), it will pull out the
username using the semicolon:
gno.land/r/demo/users/users.gno.

func Render(path string) (markdown string) {
 // path is everything after ":"
 ...
}

10 / 22

http://localhost:8888/r/demo/users:yourname
http://localhost:8888/r/demo/users/users.gno

go -> gno
prerequisites
keys
gno.land
microblog
- add package

Microblog is a realm that lets users have
feeds of time-dated posts. It lives at
/r/demo/microblog .

To use a realm, we need to add to Gno.land
using a transaction to add the microblog
packages, and then add the microblog realms

(I will get into the details of the realm and
package, but first lets try it.)

We start by adding the only package needed for
microblog:

cat password | gnokey maketx addpkg \
 --pkgpath "gno.land/p/demo/microblog" \
 --pkgdir "examples/gno.land/p/demo/microblog" \
 --deposit 100000000ugnot --gas-fee 1000000ugnot \
 --gas-wanted 2000000 --broadcast --chainid dev \
 --remote localhost:26657 --insecure-password-stdin=true \
 yourkey

11 / 22

go -> gno
prerequisites
keys
gno.land
microblog
- add package
- add realm

Then add the realm, which happens to be the
same path except its /r/ instead of /p/ :

cat password | gnokey maketx addpkg \
 --pkgpath "gno.land/r/demo/microblog" \
 --pkgdir "examples/gno.land/r/demo/microblog" \
 --deposit 100000000ugnot --gas-fee 1000000ugnot \
 --gas-wanted 2000000 --broadcast --chainid dev \
 --remote localhost:26657 --insecure-password-stdin=true \
 yourkey

We can check to see that its up by going to
its site:

gno.land/r/demo/microblog

It will be blank because we have not added any
information to it yet.

12 / 22

http://localhost:8888/r/demo/microblog

go -> gno
prerequisites
keys
gno.land
microblog
- add package
- add realm
- add post

There is basically just one function:
NewPost(text string) which you can call to add
some post to your feed:

cat password | gnokey maketx call \
 --pkgpath "gno.land/r/demo/microblog" \
 --func "NewPost" --args "*hello*, **world**." \
 --gas-fee "1000000ugnot" --gas-wanted "2000000" \
 --broadcast --chainid dev --remote localhost:26657 \
 --send "200000000ugnot" -insecure-password-stdin=true \
 yourkey

Now your post will show up on the microblog
realm.

The realm itself is very simple. It calls
Render to render markdown that is used to
generate the html of gno.land and it has a
function for adding posts.

The main guts of the realm is in the package,
/p/demo/microblog :

gno.land/p/demo/microblog/microblog.gno.

13 / 22

http://localhost:8888/r/demo/microblog
http://localhost:8888/p/demo/microblog/microblog.gno

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages

A realm is Gno code with state, that
represents a smart contract with storage and
coins. Realms have a Render(path string) string

function that will be called when making a
transaction.

A package is Gno code that does not have
state. Usually it is code that may be used by
many realms. However you can also import
realms. This can have any functions or
structures exported to be used within realms.

14 / 22

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno

Lets look at the microblog package to
understand the differences between Gno and Go:

gno.land/p/demo/microblog/microblog.gno

This looks just like Go code, with a few
subtle differences, most notable in the
imports:

package microblog

import (
 "errors"
 "sort"
 "std" <- !!!
 "strings"
 "time"

 "gno.land/p/demo/avl" <- !!!
 "gno.land/p/demo/ufmt" <- !!!
 "gno.land/r/demo/users" <- !!!
)
...

These imports are transpiled from .gno to .go

code and have special properties.

15 / 22

http://localhost:8888/p/demo/microblog/microblog.gno

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std

There is a special import, std .

The std package is a Gno-specific package that
lets you access the caller's address, using
std.GetOrigCaller() and store addresses using the
type std.Address .

For example, when a NewPost is called to
microblog it gets the user from the key:

func (m *Microblog) NewPost(text string) error {
 author := std.GetOrigCaller() // <- returns address
 // as std.Address
 _, found := m.Pages.Get(author.String())
 if !found {
 m.Pages.Set(author.String(), &Page{
 Author: author,
 CreatedAt: time.Now(),
 })
 }

 page, err := m.GetPage(author.String())
 if err != nil {
 return err
 }
 return page.NewPost(text)
}

16 / 22

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std
- avl.Tree

The avl.Tree is imported with
gno.land/p/demo/avl . This data structure is a
self-balancing binary search tree.

Gno is completely determistic for
accountability (#452) so only one path exists
between states for validators to reach
consesus. The avl.Tree can be used as a
determistic map since Go's map ordering is
indeterminate (#311).

Here's a tiny demo:

t := avl.Tree{}
t.Set("mystring",&MyStructure)
v, found := t.Get("mystring")
if (found) {
 v2 := v.(*MyStructure) // cast it back
}

Make sure to cast here because it stores as an
interface{} .

17 / 22

https://github.com/gnolang/gno/issues/452
https://github.com/gnolang/gno/issues/311

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std
- avl.Tree

For example, in the microblog code, avl.Tree

stores pages:

func NewMicroblog(title string, prefix string) (m *Microblog)
 return &Microblog{
 Title: title,
 Prefix: prefix,
 Pages: avl.Tree{},
 }
}

which can be retrieved through Get or Iterate :

func (m *Microblog) GetPages() []*Page {
 var (
 pages = make([]*Page, m.Pages.Size())
 index = 0
)
 m.Pages.Iterate("", "", func(key string, value interface{}
 pages[index] = value.(*Page)
 index++
 return false
 })
 sort.Sort(byLastPosted(pages))
 return pages
}

18 / 22

http://localhost:8888/p/demo/microblog/microblog.gno

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std
- avl.Tree
- re�ection

As of June 2023 Gno does not support
reflection (#750) which means some of the Go
standard library does not work in Gno.

For example, fmt uses reflection. In Gno, you
can instead use gno.land/p/demo/ufmt which is a
micro-implementation of the fmt library. This
is the library that you can use to do
formatting with basic types, like using
ufmt.Sprintf .

For example, in microblog, the ufmt package is
used to format the title:

ufmt.Sprintf("# %s\n\n", m.Title)

19 / 22

https://github.com/gnolang/gno/issues/750

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std
- avl.Tree
- re�ection

The lack of reflection affects some other
packages, like sort . Currently you cannot use
sort.Slice because the code uses reflection and
is not ported to Gno.

However, you can use the classic method of
implementing Len() , Swap(i, j int) and Less(i, j

int) bool to do sorting.

For example in the microblog code:

// byLastPosted implements sort.Interface for []Page based on
// the LastPosted field.
type byLastPosted []*Page

func (a byLastPosted) Len() int { return len(a) }
func (a byLastPosted) Swap(i, j int) { a[i], a[j] = a[j],
func (a byLastPosted) Less(i, j int) bool { return a[i].LastPo
...
...
sort.Sort(byLastPosted(pages))

20 / 22

http://localhost:8888/p/demo/microblog/microblog.gno

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
- std
- avl.Tree
- re�ection
- realms

The other main difference between Go and Gno
is the imports.

While the standard library is the same, its
currently not possible to import 3rd party
code, other than realms + packages. This may
change in the future.

Currently, there are already many available
packages and many available realms which can
be imported.

In microblog we use the realm for users, the
package for avl.Tree and the package for ufmt ,
which are accessed using the prefix gno.land/ :

package microblog

import (
 ...
 "gno.land/p/demo/avl" <-
 "gno.land/p/demo/ufmt" <-
 "gno.land/r/demo/users" <-
)
...

21 / 22

https://github.com/gnolang/gno/tree/master/examples/gno.land/p/demo
https://github.com/gnolang/gno/tree/master/examples/gno.land/r/demo

go -> gno
prerequisites
keys
gno.land
microblog
realms vs
packages
go vs gno
conclusion

This is just the tip of the iceberg when it
comes to Gno and Go.

Most anything you can do in Go, you can do in
Gno (with the caveats mentioned).

For more information checkout the resouces
here:

https://github.com/gnolang/awesome-gno

22 / 22

https://github.com/gnolang/awesome-gno

